Technology	Description	Pollutant	Typical Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints	Byproducts/ Wastes	Technology Transferability	Status	References	Other Information
Precombustion / Coal Cleanin	g Technologies											
Coal Cleaning			0-78% 48% average		\$1,300 - \$1,650/kW (2001\$) (a) \$1200/kW (+\$200-300/kW site costs) EPRI claims this is same as for a new supercritical PC coal plant. (Rod Sobin)				western coal to reduce sulfur & improve boiler performance; Hg removal varies	methods are under development	'Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers' 7/2000	

Tooky	Deceri-Ai	Dellertand	Typical	Emigais - 1 - 1	Conitc! C+	Onerelia - Carr	Construir	Byproducts/	Toolandless Tooland 199	Otat	Dofor	Other Information
Technology Combustion Technologies	Description	Pollutant	Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints	Wastes	Technology Transferability	Status	References	Other Information
		NOx	Lower firing temps. Reduce amount thermal NOx formed, but could not find exact % reduction	0.7 lb/MWh (a) 0.15 lb/MMBtu or 1.09 lb/MWh (b)								
		SO2	>97% (a) - >99% (b)	<0.1 lb/MMBtu (b)								
	Feedstock is not burned directly, but is first sent to a gasifier. The gasifier breaks down coal (or any C-based feedstock) into chemical constituents prior to combustion by applying pressure, heat and steam, and controlling the stoichiometric ratios of oxygen or air. The product is called	PM	emission rates 95% lower than PM from convential coal fired plants with controls.	<0.04 lb/MWh (a) < 0.012 lb/MMBtu (b)					The Wahash Diver Project renowared			
	"syngas" and is primarily H, CO, and other gaseous constituents. Noncombustible impurities	Lead		7.2 lb/hr (a)	£4.000 £4.0507			1100	The Wabash River Project repowered a 1950s vintage pulverized coal-fired			
gaseous constituents. Noncombu separate and leave through the bc gasifier as stag (with minimal flyas downstream). Sulfur impurities fo which S or H2SO4 is easily extract downstream for commercial use, generated in the gasifier's oxygen environment, and instead N react NH3, which can be removed from and sold commercially for use in foroducts or other ammonia-based When syngas leaves the gasifier, H2S, NH3 and PM and is burned combustion turbine. Exhaust heat combustion turbine is used in a sit		CO Mercury	50% ? (a) - Half the potential release based on Hg levels in the coal. Rod Sobin wrote that the degree of removal is as much as one is willing to pay for, not limited by the technology (TN Eastman removes 96% of Hg at a gasification facility with carbon beds being replaced every 2 years).	(b)	\$1,300 - \$1,650/kW (2001\$) (a) \$1200/kW (+\$200- 300/kW site costs) EPRI claims this is same as for a new supercritical PC coal plant. (Rod Sobin)	?	Demonstration project showed that gasifier refractory damage was incurred by frequent feedstock changes	H2S (commercially valuable) NH3 (commercially valuable) Slag	power plant with the integration of an advanced gasification system, however the gasification system and gas turbine replaced the PC boiler. Execess heat from the gas turbine was used in a heat recovery steam generator for a 1952 vintage steam turbine. Installing a gasification system is more of a ground-up boiler replacement opperation than an addon for existing boilers.	Relativly New- several demonstration projects in the US	DOE Demo Project. Fact Sheets	(See associated word document, combustion_tech_source_info.doc, for a description of data collection methods.)
		Halogens HAP metals										
		Other HAPs		oiroulotie = h = 1								
		NOx		5.0 lb/ton bubbling bead: 15.2 lb/ton								
Fluidized Bed Combustion	FBCs suspend solid fuels on upward-blowing jets of air during combustion, and inject a sulfur-absorbing chemical, such as limestone or dolomite into the combustion chamber to remove sulfur compounds before the tail gas exits the boiler. The turbulent mixing of gases & solids, results in more effective chemical reactions and heat transfer. There are two major categories of FBCs: (1) atmospheric (2) pressurized. Currently, atmospheric FBCs are more advanced (or commercialized) than pressurized FBCs. The two principal types of atmospheric FBCs are bubbling bed and circulating bed, which fundamentally vary in fluidization velocity. High-temperature cyclones are used in circulating FBCs and in some bubbling FBCs to capture the solid fuel and bed material for return to the primary combustion chamber. The circulating FBC maintains a continuous, high-volume recycle rate which	SO2	At bed temps. <1,620 F, SO2 capture of 70% - 90% were achieved at Ca/S ratios of 1.5 and 4.0 respectively (a) SO2 captures of 90% - 95% were achieved with Ca/S ratios of 1.14 - 1.5 respectively and a temp. of 1,580 F (b)	and circulating bed, use: Ib SO 2 /ton coal = 39. 6(S)(Ca/ S). In this equation, S is the weight percent sulfur in the fuel and Ca/ S is the molar Ca- to-S ratio in the bed. This equation may be	\$ 1,123/kW (net) (a)	\$ 1,888,000 / month (a)			Ground-up replacement of old boilers	Relatively new technology, but becoming more popular and commercially available. Several current CFB projects submitted, i.e. Greene Energy		(See associated word document, combustion, tech, source_info.doc, for a description of data collection methods.)

			Typical					Byproducts/				
Technology	Description	Pollutant	Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints	Wastes	Technology Transferability	Status	References	Other Information
	increases the residence time compared to the bubbling bed design. Because of this feature, circulating FBCs often achieve higher combustion efficiencies and better sorbent utilization than bubbling bed units.	PM		circulating bed: 29.4 lb/ton							AP-42, section 1.1	
	_	Lead										
		со		circulating bed: 18 lb/ton bubbling bead: 18 lb/ton							DOE Demo Project Fact Sheets	
		Mercury										
		Halogens HAP metals										
Low NOx Burners	N. I	Other HAPs	Coal - 40-60%:		\$5-8 million for 350							
Low NOx Burners	New burners are installed which spread out the flame area to minimize max flame temperature	NOx	Oil and gas - 40- 85%		MW plant	Low	May not be feasible in some retrofit situations	None	New burners are required. Should be applicable to most combustion sources.	Simple and requires no additonal labor		
Flue Gas Recirculation	A portion of the flue gas is recirculated as combustion air to reduce NOx	NOx	Oil and gas - 30- 50%		\$8-20/kW; \$4 million for 350 MW plant	Low	Can cause operational difficulties with coal- fired boilers - not always applicable for coal	None	Physical modifications are required to recirculate a portion of the flue gas. Should be applicable to most combustion sources.	No additional labor required, fairly simple operation		
Low Excess Air	Limits amount of combustion air to boiler	NOx	up to 20%		\$60-200/kW for retrofit, with individual SCRs as high as \$165 million.	None	May not have any impact	None	Requires closer monitoring of excess air requirements; can also result in better fuel efficiency. Improvements may be needed to reduce air inleakage in heat exchange equipment. Should be applicable to most combustion sources.	Many units have been retrofit with SCR for NOx SIP call. The oxidation of mercury from SCRs is only beneficial in combination with a scrubber		
Staged Combustion	Combustion takes place in phases, with a starved- air condition in the initial flame. Additional air is added later to complete the combustion process. Limits the exposure of nitrogen from the atmosphere to flame temperatures and forces oxygen to be used for combustion instead of forming NOx.	NOx	Coal - 20-40%; Oil and gas - 10- 30%		\$20-60/kW	None	May not have a positive impact	None	Should be applicable to most combustion sources, as long as adequate fire box volume exists	Relatively simple operation		

			Typical					Byproducts/		_		
Technology	Description	Pollutant	Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints	Wastes	Technology Transferability	Status	References	Other Information
Post Combustion Technologi Electrostatic Precipitators		lou.	loo o oo ma	D 00 II / D1	101 000 01 050 1111	T.	1	1			EDA 450/D 00 004 1	ľ
(ESPs) (cold-side)	Charge particulates and collect on oppositely charged collector plates	РМ	99.0-99.7%	0.03 lb/mm Btu 1978 NSPS	\$1,300 - \$1,650/kW (2001\$) (a) \$1200/kW (+\$200- 300/kW site costs) EPRI claims this is same as for a new supercritical PC coal plant. (Rod Sobin)						EPA-453/R-98-004a,-t "Study of HAP Emissions from Electric Utility Steam Generating Units - Final Report to Congress" (February 1998)	
		A i -	000/		NiE-E-E-E-E-E-E-E-	Ni-allalla if ballas ia						
		Arsenic Beryillium	98% 94%		already equipped	Negligible if boiler is already equipped with		+				
		Cadmium	80%		with ESP	ESP						
		Chromium	97%	,								
		Lead	93%									
		Manganese	98%									
	Pulverized coal fired boiler [bituminous]	Mercury	25% Av. Red. 36%						May be enhanced by sorbent injection Already in use for PM. Cooler		EPA Report600/R-01-	T. I. FO. T. I. O.
	ruvenzeu wai ineu boilei (biluminous)	ng	AV. Ned. 30%						Interest in Use of In A. Couler temperature improves ESP performance for Hg. Hg removal efficiency found to be 42-83% on oil-fired boilers. Other references give cold-side ESP removal of mercury at a median of 15% & mean of 24% ("Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers" 7/2000)		109	Table EST, Table 3-3
		Total PM	99to 99.7%									
Electrostatic Precipitators	Charge particulates and collect on oppositely	PM	99.0-99.7%	0.03 lb/mm Btu		Negligible if boiler is		İ			EPA-453/R-98-004a,-b	
(ESPs) (hot-side)	charged collector plates			1978 NSPS	already equipped	already equipped with					"Study of HAP	
		Arsenic	92%		with ESP	ESP					Emissions from	
		Beryillium Cadmium	99%								Electric Utility Steam Generating Units -	
		Chromium	99%								Final Report to	
		Lead	97%		1			1			Congress" (February	
		Manganese	97%	,							1998)	
		Mercury	0%						May be enhanced by sorbent injection			
	Pulverized coal fired boiler [bituminous]	Hg Total PM	Av. Red. 9% 99 to 99.7%			(Natural gas is typically much more expensive than coal.) \$/ MM Btu input					EPA Report600/R-01- 109	Table ES1; Table 3-3
Enhanced ESP		Hg [0-50% at one test unit] PM 99% removal	see column C						Being developed to capture finer particles may remove more Hg. One test unit Hg removal improved with lower temperature.		"Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers" 7/2000	
Wet ESP		Hg [approx 30% in 2 pilot scale test]; PM removal 56% in pilot studies							Being investigated for "polishing" residual emissions from other controls may improve Hg removal. Lower temperature improves Hg control.	Pilot studies	"Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers" 7/2000	
Non-Thermal Plasma	Electro-Catalytic Oxidation (ECO) utilizes a barrier discharge to oxidize pollutants to be captured by a wet ESP that also collects PM	Hg >80%							Currently in demonstration project stage		"Control Technology: Non-Thermal Plasma Based Removal of Mercury"	First Energy's R.E.Burger Generating Station
Fabric Filtration (Baghouses)	Particulates collected on a fabric bag	PM	99.0-99.9%	0.03 lb/mm Btu				İ			EPA-453/R-98-004a,-b	
			ļ	1978 NSPS	L			<u> </u>			"Study of HAP	
		Arsenic	99%			Negligible if boiler is		1			Emissions from	
		Beryillium Cadmium	99% 72%		already equipped with fabric filter	already equipped with fabric filter		-			Electric Utility Steam Generating Units -	
		Chromium	94%		with labric litter	IADIIC IIITEI		1			Generating Units - Final Report to	
		Lead	99%		1			1			Congress" (February	
		Manganese	98%	,	1			1			1998)	
		Mercury	36%						May be enhanced by sorbent injection		, ·	
	Pulverized coal fired boiler [bituminous]	Hg	Av. Red. 90%						Lower temperatures appear to improve		EPA Report600/R-01-	Table ES1; Table 3-3
		Total PM	99 to 99.9%		<u> </u>	l		1	performance.		109	

Technology	Description	Pollutant	Typical Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints	Byproducts/ Wastes	Technology Transferability	Status	References	Other Information
Selective Catalytic Reduction (SCR)	Use of Selective Catalytic Reduction NOx control enhances oxidation of Hg0 in flue gas and results in increased mercury removal in wet FGD In general, the amount of Hg captured by a given control technology is greater for bituminous coal than for either subbituminous coal or lignite. Existing control remove about 38% of the 75 tons of mercury input with coal in US coal fired boilers, about 48 tons of Hg.	NOx Hg	97% 80%-90% 98% when SCR used with SDA and FF 95% reduction in Hg emissions by SCR along with a scrubber		\$60-200/kW for retrofit, with individual SCRs as high as \$165 million.	\$1,602/ton of NOX removed (1977 dollars) Hg and NOX comparison Total annual cost 0.18 - 1.15 millis/kWh - Hg 1.85 - 3.62 millis/kWh - SCR 0.21 - 0.83 millis/kWh - low NOX burners			Analysis showed coal fired units as predominant candidates for NOx control technologies accounting for 940K tons or 98% of total NOx reduction requirements Oxidation of elemental Hg by SCR catalyst may be affected by the space velocity of catalyst, temperature of the reaction, the concentration of NH3, age of the catalyst, and concentration of chlorine in the gas stream. Field testing by 6 coal fired power plants in 2001 showed that while oxidation of Hg across SCR systems can occur, it is a complex proces that may be dependent on several variable such as coal properties, furnace combustion conditions, and SCR catalyst factors including type, sizing, and age.		Cheminfo USEPA Office of R&D	soluble. SCR catalysts can act to oxidize a significant portion of the Hg0 enhancing the capture of Hg in downstream wet FGD.
Selective Non-Catalytic Reduction (SNCR)	Ammonia or urea injected to react with NOx to form elemental nitrogen and oxygen. No catalyst used	NOx Hg NOx Hg PM2.5	Remaining 3% 30%-50%		\$20-60/kW						Mann and Ramesan, DOE, Ward - SAIC Angelo Proestos, Cheminfo	
Wet Scrubbers (represent 83% of current US-installed FGD capacity)	Flue Gas Desulfurization using limestone or lime	SO2	96.3	0.15 lb/mmBtu with 2.5% S coal	Continuring to decrease	Energy requirement have cont to decrease lowering operating costs		wet slurry > gypsum w add trt			permit issued, Oct 2002	Coal Survey by Don Shepherd, NPS
		SO2	97.9	0.167 lb/mmBtu with 4.2% S coal		55515					permit issued, Mar 2005	Coal Survey by Don Shepherd, NPS
		HCI	95+									www.icac.com
		HF Heavy metals	>33 significant									www.icac.com www.icac.com
		Hg >90% oxidized Hg; 0-70% elemental Hg 80-90% SO2	97% see column C						Already in use to reduce SO2. Effectiveness for Hg removal is highly dependent on mix of chemical species present & other factors including liquid-to gas ratio, chlorine content & coal type	-	"Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers" 7/2000	www.icac.com
Dry Scrubbers	Flue Gas Desulfurization using dry lime injection	SO2	West 83.1	0.329 lb/mmBtu with 0.65% S coal	Generally lower than spray drying scrubbers	Higher operating costs than spray drying scrubbers		gypsum			operating, permit issued 1986	Coal Survey by Don Shepherd, NPS
	Flue Gas Desulfurization using lime spray drying	SO2	93.7	0.162 lb/mmBtu with 1.3% S coal	Less than wet scrubbers	Less than wet scrubbers		gypsum			permit issued, Jan 2001	Coal Survey by Don Shepherd, NPS
		Heavy metals Hg										
		Hg 6-96% [With recent studies 63%] SO2 80- 90%	see column C						Only found in 1% of US boilers; removal efficiency for Hg depends on speciation, temperature & chlorine content. Lime scrubbers show better Hg removal in pilot tests		"Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers" 7/2000	•

			Typical					Byproducts/				
Technology	Description	Pollutant	Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints	Wastes	Technology Transferability	Status	References	Other Information
Multiple Pollutant Technologie												
Fabric Filter & Spray Dryer Adsorber	Pulverized coal fired boiler [bituminous]	Hg	Av. Reduction 98%		\$1,300 - \$1,650/kW (2001\$) (a) \$1200/kW (+\$200- 300/kW site costs) EPRI claims this is same as for a new supercritical PC coal plant. (Rod Sobin)						EPA Report600/R-01- 109	Table ES1;
Fabric Filter & Spray Dryer Adsorber & Selectic Catalytic Reduction	Pulverized coal fired boiler [bituminous]	Hg	Av. Reduction 98%								EPA Report600/R-01- 109	Table ES1;
Particulate Scrubber Wet Flue Gas Desulfurization	Pulverized coal fired boiler [bituminous]	Hg Total PM	Av. Red. 12% 95 to 99%								EPA Report600/R-01- 109	Table ES1; Table 3-3
Cold side -ESP & Wet Flue Gas Desulfurization	Pulverized coal fired boiler [bituminous]	Hg	Av. Reduction 75%								EPA Report600/R-01- 109	,
Desulfurization	Pulverized coal fired boiler [bituminous]	Hg	Av. Reduction 49%								EPA Report600/R-01- 109	,
Fabric Filter & Wet Flue Gas Desulfurization	Pulverized coal fired boiler [bituminous]	Hg	Av. Reduction 98%							Limited data - based on two short term tests	EPA Report600/R-01- 109	Table ES1;
Combined SCR & Wet Scrubber		Hg SOx NOx	50-80% 90+% 90+%						Already in use to reduce Nox helps convert Hg to soluble, oxidized form, thereby allowingfor grreater removal by downstream wet scrubber	Limited data	"Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers" 7/2000	
Combined ESP/Baghouse		Hg [34-87% in 2 pilot facilities]; PM removal >99.9%							Combination technology to achieve very low PM emissions can improve removal of Hg & other toxics. EPRTs COHPAC version with carbon adsorption (TOXECON) provided reductions up to 90%.	Pilot studies	"Technology Options & Recommendations for Reducing mercury & Acid Rain Percursor Emissions from Boliers" 7/2000	
ISCA [post combustion emission control system]	Chemical Oxidation- gas phase oxidation process	SOx NOx Hg	99% 98% > 99%					Saleable acid products from pollution process control system		bench scale	ISCA Fact Sheet & Management Information	

Treatment of the control of the cont				Typical					Byproducts/				
Section of Transport Programs of Transport P		Description	Pollutant		Emission Limit	Capital Cost	Operating Cost	Constraints		Technology Transferability	Status	References	Other Information
Statistical Plant of Control Plant of Co	Additives/ Sorbents Sodium Tetrasulfide (Na2S4)	Injected Upstream of a Baghouse (270 F)-	Hg	90% reduction							Pilot Tested at	ICAC Forum 03	Process has been used in
Authority Private Filter Private Filter Cannot Standard Filter Private Filter Cannot Standard Filter Private Filter Cannot Standard Filte		Bituminous Coal				\$1200/kW (+\$200- 300/kW site costs) EPRI claims this is same as for a new supercritical PC coal plant. (Rod				plants		Power Plant Mercury Control by Injecting	waste to energy plants
mental College Feet Peet College Colle	Amended Silicate		Hg							may not impact fly ash sales	Xcel Energy's Comanche Station	Amended Silicate Sprbents for Mercury	
Source receives good and provided and provid	Remedia Catalytic Filter System	Incorporated into pulse-jet baghouse fabric filters	Hg									"A Novel Technology to Immobilize mercury	
removal short-term test femoval short-term	MerCAP (Mercury Control Adsorption Processes) gold- coated plates	baghouse or ESP casing, or stack				month regeneration & 100% redundancy is est. at \$4.7 million for 250MW unit (\$18.8 k/W) [\$2.3 million is gold media & substrate]; 1 year regeneration & lower mercury capacity est. at \$1.7 million for 250MW unit (\$55/kW) [\$12.6 million for gold media and substrate]; 1 levelizzed costs from	cost astimata of	Injection rate 1 natifier				Demonstration of Mercury Control by Adsorption Processes (MerCAP)	recover Hg
agenstum-enhanced time with eath ordation wet FGD pitched by them test of term test) and the eather than test of term test of term test of term test of term test of term test of term test of term test of term test of term test of term test of term test of term test of term test of term test of term test of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test of term test of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of term test, with ESP 60 to 70% of test of	limestone, forced oxidation wet FGD system	įriigii Suliui, easterii bituriiliibusj	ng	removal short-			variable additive cost (equipment already	injection rate i gal/ili			Short-term test	INETE Project & Teport	Power Agency
othert-Powered Activated annother place of the properties of the p	Additive injection upstream of magnesium-enhanced lime with ex-situ oxidation wet FGD system	[high sulfur, eastern bituminous]	Hg	removal short-			variable additive cost (equipment already present) .18-	injection rate 27 gal/hr			short-term test	NETL Project & report	Cinergy [Zimmer/Moscow, OH]
anganeses); fabric filter agriculture anganeses); fabric filter agriculture and particulture Sorbent-Powered Activated Carbon [PAC] injection pustream of Compact Hybrid Particulate Collector (COHPAC) baghouse; TOXECON when sorbent such as AC is injected upstream of COHPAC baghouse downstream of an ESP	[low sulfur, eastern bituminous]	Hg	removal short- term test]; with ESP 60 to 70 % removal; with FF up to 90%		costs of equipment <\$3/k/W; 100 to 500 MW plant to add PAC injection equipment \$600,000 to \$1000000; installing FF cost \$40 to \$50/k/W but reduces sorbent use up to	cost estimate of variable additive cost (equipment already present) .35 mills/kWh; with ESP sorbent costs approx. 1.2 mills/kWh; with FF	vary with type of coal, flue gas temperature/unburned carbon levels, sorbent injection rate, activated carbon type and between plants with ESPs versus FFs; if all plants used PAC, there might initially be	maybe/may not be a problem; COHPAC & TOXECON combined removes ash upstream of PAC injection and remains acceptable for		short-term test	ICAC Forum 03 Report "Full-Scale Results of Mercury Control by Injecting Activated Carbon Upstream of ESPs and Fabric Filters; Performance & Costs of Mercury Control Technology for Bituminous Coals by Michael D. Durham on		
discharge in bolier flue upstream of an ESP & wet scrubber; increased SO3 improves collection of PM acts to convert Hg0 to Hg2+ that can be captured by alkalineFGD scrubber downstream Alabama Power Miller Plant (Unit Bried Electric Utility 3) Boilers.Interim Report*, 4/2002	Pahlman sorbent [oxide of manganese]; fabric filter baghouse serves as "reaction chamber"		NOx Hg PM	>0.01lbs./MMBt u 95% >0.002lbs./MM			30 % less [vs. wet FGD		prior to Pahlman		pilot test	Technologies Corp.	
	Corona Discharge	discharge in bolier flue upstream of an ESP & wet scrubber; increased SO3 improves collection of PM acts to convert Hg0 to Hg2+ that can be	Hg	80%							Alabama Power	Emissions from Coal- Fired Electric Utility Boilers:Interim Report",	
ectro-catalytic Oxigation	Electro-catalytic Oxidation							1	 	1	bench		

Technology	Description	Pollutant	Typical Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints	Byproducts/ Wastes	Technology Transferability	Status	References	Other Information
Electron Beam Irradiation	identical to corona discharge except power source is battery of irradiating electron "guns" &	Pollutant	Efficiency	Emission Limit	Capital Cost	Operating Cost	Constraints		Used in Japan & China; available commercially since 1980s	bench	References	Other Information
	oxidation products enter semi-dryabsorption system with ammonia reagent & converted to ammonium sulfate & nitrate salts [usable for							contaminants	commission, once 10000			
	fertilizer];											
Direct Injection of Oxidizing Agents into Flue Gas										bench		
	Use activated carbon (AC) in CFB. AC is continuously fed to reactor where mixed with flue gas at relatively high velocity, separated in FF & recycled to reactor								currently used at waste incinerators in Europe and gasification units in US			
Circulating bed of Fly Ash	fly ash & activated carbon-based technology with ESP and lime for SO2 removal	Hg	80% Hg vapor							test	"Pollution Engineering" archives/2000/pol0201. 00/po10200news.htm	
	use of injection of limestone & trona	reduction 69%, SO3 90%, HCL 75%, Nox 11%, PM 80% & Hg 67%; Iimestone- SO2 redcution 64%, SO3 90%, HCL 0%, Nox 4&, PM 18% & Hg 89%	see column C				Excessive slagging occurred on superheater tubes requiring shut down to remove slag			test	Full-Scale Evaluation of a Multi-Pollutation of a Multi-Pollutation Reduction Technology: SO2-Hg and Nox MobetecUSA, Inc. for Presentation at ICAC's Forum '03'	Cape Fear Power Station
Zeolite catalysts		Hg	45-92%					aluminosilicate sorbents should not degrade fly ashes used as a substitute for cement in concrete or filler in plastics		bench	"Status review of mercury control options for coal-fired power plants" 2003	